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Abstract Atmospheric acidic deposition has been a major environmental problem since the industrial
revolution. However, our understanding of the effect of acidic deposition on soil pH is inconclusive. Here we
examined temporal variations in topsoil pH and their relationships with atmospheric sulfur and nitrogen
deposition across China’s forests from the 1980s to the 2000s. To accomplish this goal, we conducted artificial
neural network simulations using historical soil inventory data from the 1980s and a data set synthesized
from literature published after 2000. Our results indicated that significant decreases in soil pH occurred in
broadleaved forests, while minor changes were observed in coniferous andmixed coniferous and broadleaved
forests. The magnitude of soil pH change was negatively correlated with atmospheric sulfur and nitrogen
deposition. This relationship highlights the need for stringent measures that reduce sulfur and nitrogen
emissions so as to maintain ecosystem structure and function.

1. Introduction

Fossil-fuel combustion and intensive agricultural fertilization have led to acidic deposition around the world.
Although legislation aimed at reducing sulfur dioxide (SO2) emissions [Klimont et al., 2013] has reduced
the rate of sulfur deposition in North America and Europe, anthropogenic SO2 emissions in East Asia have
continued to increase until 2006 [X. K. Lu et al., 2010, Klimont et al., 2013]. Meanwhile, emissions of reactive
nitrogen from various anthropogenic sources have substantially increased since the industrial revolution,
leading to an average atmospheric deposition rate of 105 Tg yr�1 at the global scale [Dentener et al., 2006;
Galloway et al., 2008]. Acidic deposition can significantly alter soil chemical properties by lowering the
soil pH [M. Lu et al., 2011], often inducing the loss of exchangeable base cations (Ca2+, Mg2+, K+, and Na+)
[Lucas et al., 2011] and mobilizing exchangeable aluminum (Al3+). Reduced availability of Ca2+ and Mg2+

in the soil decreases stress tolerance in various tree species, while increased availability of exchangeable Al3+

is detrimental to tree growth and ecosystem health [Lieb et al., 2011]. These ecological impacts indicate
that a profound understanding of soil pH change is crucial for evaluating the effect of acidic deposition on
ecosystem structure and function [Kirk et al., 2010] and can be important in developing control measures to
improve soil quality [Yang et al., 2012].

Soil pH dynamics have attracted significant attention in recent years, with extensive observations derived
from the resurvey of previously sampled sites [e.g., Lapenis et al., 2004; Warby et al., 2009; Hédl et al., 2011;
Yamada et al., 2012]. However, the results of these studies have been highly variable, ranging from significant
decreases [Lapenis et al., 2004; Warby et al., 2009; Bedison and Johnson, 2010; Hédl et al., 2011; Yamada et al.,
2012; van der Heijden et al., 2013] to significant increases [Kirk et al., 2010] in topsoil pH over the sampling
interval. Further, some studies have reported no significant change in topsoil pH over the sampling period
[Hazlett et al., 2011; McGovern et al., 2013]. These largely conflicting results suggest that more in-depth
analyses of soil pH dynamics are necessary. Although it is evident that acidic deposition is very high in East
Asia, soil pH dynamics have not been well studied in this region. It is therefore a priority to investigate
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long-term soil pH dynamics in East Asia [Dentener et al., 2006; Klimont et al., 2013] so as to develop mitigation
strategies for maintaining soil productivity.

China is the most rapidly developing county in East Asia and the largest SO2 emitter in the world while also
suffering one of the highest levels of nitrogen deposition [Pan et al., 2013]. China is an ideal platform for
exploring soil pH dynamics for several reasons. First, atmospheric sulfur [Zhao et al., 2009; Z. Lu et al., 2011]
and nitrogen deposition [Lü and Tian, 2007; Liu et al., 2013] exhibit spatially distinct patterns across China,
with higher deposition rates in the country’s eastern regions. This large spatial gradient provides a natural
platform to explore the relationship between soil pH dynamics and the strength of external acidic inputs.
Second, soil conditions have been well documented in China, both historically and in present day, allowing
for evaluation of soil pH change over sampling intervals. Historical records reach back to 1979 with the
initiation of the National Soil Inventory, which described soil pH across the country from 1979 to 1989
[National Soil Survey Office, 1998]. More recently, soil pH has been reported in a number of individual studies
that can be synthesized to generate a modern data set. Utilizing these data sets, two studies have described
widespread increases in soil acidity across the major cropland [Guo et al., 2010] and grassland ecosystems
[Yang et al., 2012] of China. However, a comprehensive analysis of temporal changes in soil acidity across
forest ecosystems in China (~17% of total land area of the country) has not yet been undertaken.

In this study, we evaluated long-term variations in soil pH across major forest types in China from the 1980s to
the 2000s. We utilized a data set synthesized from 240 data records arising from 130 articles published after
2000 and 247 soil profiles listed in the National Soil Inventory during the 1980s. The synthesized data set
was then combined with related environmental parameters to construct an artificial neural network (ANN)
to predict soil pH and its changes during the study period (1980s to 2000s). We further examined the
relationship between soil pH change and external acidic deposition to test the hypothesis that external acidic
inputs regulate soil pH dynamics.

2. Materials and Methods
2.1. Study Area

Forests cover 16.6% of the total land area in China. Major forested areas fall between latitudes 18.46°N and
52.97°N and longitudes 80.82°E and 133.60°E. The mean annual temperature (MAT) and mean annual
precipitation (MAP) of forested areas during the 2000s were within the range of �4.3 to 25.1°C and 158.9 to
2142.2 mm, respectively. There are fivemajor forest types in China: evergreen broadleaved forests, deciduous
broadleaved forests, mixed coniferous and broadleaved forests, evergreen coniferous forests, and deciduous
coniferous forests [Chinese Academy of Sciences, 2001].

2.2. Data Synthesis

Data from the National Soil Inventory of the 1980s [National Soil Survey Office, 1993, 1994a, 1994b, 1995a,
1995b, 1996], including the location for each soil profile and soil pH at different horizons, were used. Soil pH
was measured potentiometrically using a pHmeter in soil water suspension (air-dried samples and deionized
water), with a soil:water ratio of 1:2.5 [Bao, 2000]; 247 soil profiles derived from the National Soil Inventory
were used to represent the historical state of soil acidity (Figure S1 in the supporting information). These soil
profiles covered all five of the major forest ecosystems across the country (n = 42, 58, 53, 81, and 13 for
evergreen broadleaved forests, deciduous broadleaved forests, mixed coniferous and broadleaved forests,
evergreen coniferous forests, and deciduous coniferous forests, respectively). These soil profiles have been
widely used to explore the pattern of soil biogeochemistry at different soil horizon across China [Xie et al.,
2007; Yang et al., 2007a, 2007b]. However, as topsoil is usually more sensitive to atmospheric acidic deposition
than other horizons, we only used data from the upper horizon, with an average depth of 15 cm.

The 2000s data set was synthesized from 130 articles, ultimately resulting in a soil pH data set representative of
forested areas across the country. Articles published after 2000 were collected from China Knowledge Resource
Integrated (CNKI) database (http://www.cnki.net/) and Institute for Scientific Information (ISI) Web of Science
database (http://apps.webofknowledge.com) using “soil pH” or “soil acidity” as key words. To assure data
consistency, the following four criteria were used: (i) Only articles that reported soil pH in forest ecosystems
were considered, (ii) for manipulation experiments only data from the “control” plots were used, (iii) soil pH
must have been determined following the same methodology as the National Soil Inventory (i.e., measured
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potentiometrically, soil water suspension, air-dried soils, deionized water, and soil:water ratio of 1:2.5; notably,
studies that use other soil:water ratios were excluded from this synthesis), and (iv) only the surface layer data in
mineral soils were used. Soil depth was concentrated within the top 30 cm in most studies, with the average
close to the historical record (14.4 versus 15 cm). To clarify whether depth variability induces significant shifts
in soil pH, we compared soil pH of surface and subsurface layers using data derived from the National Soil
Inventory. Paired t test analysis revealed that forest soil pH did not exhibit a significant difference between the
two soil layers (average depth interval: 0–15 versus 15–45 cm, P = 0.161; Figure S2), demonstrating that
relatively small variability in soil depth would not induce large bias in subsequent analyses.

Based on the above-mentioned criteria, 240 forest soil pH records were synthesized from the literature (Figure S1
and Text S1). Similar to other data syntheses [e.g., Liu et al., 2013], it was difficult to obtain a random distribution
of the synthesized sites across the study area. However, the synthesized data covered all five major forest types
found in the study area (n = 54, 83, 36, 59, and 8 for evergreen broadleaved forests, deciduous broadleaved
forests, mixed coniferous and broadleaved forests, evergreen coniferous forests, and deciduous coniferous
forests, respectively). Interestingly, a marginally significant correlation was observed between the sample size
and the area proportion covered by each of five major forest types (r = 0.82, P < 0.1), indicating that replicate
numbers approximately reflect forest coverage across the study area. Again, similar to other data syntheses
[e.g., Bond-Lamberty and Thomson, 2010], our synthesized measurements did not cover the entire decade
equally (Figure S3a), with 48.8% of observations occurring in the late 2000s (2008–2010) and 7.5% of observations
occurring in the early 2000s (2000–2002). However, the frequency distribution of the sampling year exhibited
similar patterns between broadleaved (Figure S3b) and coniferous forests (Figure S3c), demonstrating that a
potential regional bias in available soil data will not have a profound effect on subsequent model prediction.

Along with the target variable (soil pH), we synthesized other geographic, climatic, and vegetation parameters
not documented in the National Soil Inventory or collated literature. Site names recorded in the National Soil
Inventory were converted to geographic locations (longitude and latitude) using a digital map developed by
the National Administration of Surveying, Mapping and Geoinformation (http://www.tianditu.cn/map/index.
html). Based on these longitude/latitude coordinates, altitude was obtained from a digital elevation model
(http://data.geocomm.com/dem/). The decadal average of MAT and MAP from 1979 to 1989 and 2000 to 2010
were extracted from a national climate data set (at a 0.1°×0.1° resolution) (National Meteorological Information
Center of China Meteorological Administration, http://www.nmic.gov.cn). Following vegetation descriptions
in original publications, and in consultation with the vegetation atlas of China (scale: 1:1,000,000) [Chinese
Academy of Sciences, 2001], the vegetation for each site was classified as one of the following groups: evergreen
broadleaved forests, deciduous broadleaved forests, mixed coniferous and broadleaved forests, evergreen
coniferous forests, and deciduous coniferous forests. A monthly normalized difference vegetation index (NDVI)
data set was developed from the bimonthly NDVI during 1982–1989 and 2000–2010 (GIMMS NOAA/AVHRR
NDVI composites; resolution: 0.083°× 0.083°) [Tucker et al., 2005] using themaximum value compositionmethod
[Holben, 1986]. This monthly NDVI data set was then used to calculate annual NDVI, which were then
aggregated to grid cells of 0.1° × 0.1°. Finally, wet nitrogen deposition during 1979–1989 and 2000–2010 was
estimated from the corresponding MAP using an empirical function (y=3.6281exp0.001x, r2 = 0.22, P < 0.05),
which was developed using a data set synthesized by Liu et al. [2013]. Similarly, wet sulfur deposition during
the two periods was predicted from MAP on the basis of a regression relationship (y=8.90 + 0.02x, r2 = 0.23,
P < 0.05) reported by Pan et al. [2013].

2.3. ANN Simulation

ANN is an information processing paradigm that is inspired by biological nervous systems [Hopfield, 1982].
It is composed of a set of highly interconnected processing neurons. Each neuron receives a weighted set of
inputs and responds with an output. The ANN is usually trained with a training data set, which adjusts the
weight of the synaptic connections between neurons. Once trained, the ANN can be used to simulate
complex relationships between inputs and outputs.

ANN has been widely used to predict some target variable using a set of environmental parameters [e.g., Papale
and Valentini, 2003; Beer et al., 2010; Yang et al., 2014]. The ANN could simulate nonlinear relationships between
the target variable and environmental parameters and might be more powerful for regional soil mapping
[Grimm et al., 2008]. It has been demonstrated that ANN has a higher predictive capacity in regional soil
mapping comparedwithmultiple linear regression and regression kriging [Li et al., 2013]. As such, we adopted a
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feed-forward back propagation neural network (BPNN) to estimate soil pH across forested areas using related
environmental variables. Using this BPNN, we predicted soil pH at sites without data during the 1980s (and
2000s) using sites with observations during the same period.

The architecture of a BPNN includes an input layer, a hidden layer, and an output layer (Figure S4). Given that
topsoil pH exhibited systematic changes along geographic (Figure S5) and environmental gradients (Figure S6),
seven variables (latitude, longitude, altitude, MAT, MAP, NDVI, and vegetation type) were included as input
variables during BPNN analysis. Notably, the corresponding climate and NDVI data sets were involved in model
simulation during the two periods. Both input and output variables were normalized between �1 and +1
before network training to avoid overfitting. The entire data set from each period was divided into three groups
during network training: (a) training data set (70% of total data sets used to determine weights in the neural
network), (b) validation data set (15% of total data sets used to calculate errors to avoid overtraining), and
(c) testing data set (15% of total data sets used to evaluate the performance of the neural network) [Papale and
Valentini, 2003; He et al., 2006]. Both Pearson correlation coefficient and root-mean-squared error (RMSE) were
calculated to evaluate errors produced during training, validation, and testing processes. The lowest error
during both sampling periods was obtained with 11 neurons in the hidden layer. After network training,
the constructed BPNN was used to predict soil pH using environmental variables (i.e., longitude, latitude,
altitude, MAT, MAP, NDVI, and vegetation type). Finally, the predicted output ranging between �1 and
1 was rescaled to the original unit of soil pH (i.e., from 3 to 9), using the mapminmax function in MATLAB
(the MathWorks, Natick, MA, USA). To obtain a robust estimation, we performed 5000 model simulations
with bootstrapping methods before adopting the average prediction. ANN analyses were conducted using
MATLAB (the MathWorks, Natick, MA, USA).

2.4. Statistical Analyses

Based on ANN simulation, a data set of pH values (either measured or simulated) at all sites was created for
both sampling periods. A paired t test was then performed to detect statistical differences in soil pH between
the 1980s and the 2000s. Using measured data alone, we conducted an unpaired t test to examine soil pH
dynamics in four of the five major forest types (excluding deciduous coniferous forests due to the small
sample size; n = 13 and 8 during the 1980s and 2000s, respectively). Ordinary least-squares regression was
used to examine the effects of atmospheric acidic deposition (sulfur and nitrogen deposition) on soil pH
dynamics. To further examine whether a real relationship exists between soil pH change and acidic
deposition, we conducted partial correlation analysis using either longitude or latitude as a controlling factor.
Statistically, the partial correlation between soil pH change (y) and acidic deposition (x) given a controlling
variable of longitude or latitude (z) is the correlation between the residuals Rx and Ry derived from the two
linear regressions of xwith z and of ywith z, respectively. It represents the correlation between soil pH change
and acidic deposition after the influence of longitude or latitude has been removed from both soil pH change
and acidic deposition. All statistical analyses were performed using the R software package [R Development
Core Team, 2012].

3. Results and Discussion
3.1. ANN-Based Estimation

RMSE values comparing predicted and measured soil pH for training, validation, and testing data sets during
the 1980s were 0.34, 0.66, and 0.52, respectively (Figures 1a–1c). This exhibits linear relationships between
predicted and measured soil pH. Moreover, Pearson correlation coefficients (r) comparing predicted and
measured values for the 1980s were 0.96, 0.86, and 0.92 for the training, validation, and testing data sets,
respectively. Similarly, predicted soil pH for the 2000s were linearly associated with related measurements,
and r values comparing predicted and measured values were 0.95, 0.90, and 0.91 for the training, validation,
and testing data sets, respectively (Figures 1d–1f). Moreover, data points occurred near the 1:1 line, with an
RMSE of 0.35, 0.56, and 0.52 for the training, validation, and testing data sets, respectively. These results
demonstrated that the ANN approach provided reliable predictions of soil acidity for both study periods. To
further illustrate this point, we conducted a Monte Carlo analysis to evaluate ANN-based predictions.
Specifically, we extracted soil pH and related environmental variables with bootstrapping techniques and
used the selected data set to train the ANN model. We then predicted soil acidity for those sites without
actual measurements. These analyses were repeated 5000 times and testing results were summarized for
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each run. Our analyses revealed that RMSE was relatively low inmost cases across fivemajor forest types, with
the average ranging from 0.56 in deciduous coniferous forests to 0.75 in evergreen broadleaved forests
during the 1980s and from 0.68 in mixed coniferous and broadleaved forests to 0.79 in evergreen coniferous
forests during the 2000s (Figure S7). The overall RMSE across all forest types was estimated at 0.69 and 0.75
during the 1980s and the 2000s, respectively, confirming the reliability of the ANN approach. In addition,
predicted soil pH during the 2000s were positively correlated with the corresponding values during the 1980s
(r = 0.62, P < 0.05; Figure 2a). This provides indirect evidence that the ANN approach generated reasonable
predictions during both sampling periods.

3.2. Soil pH Dynamics in the Broadleaved and Coniferous Forests

Comparisons of soil pH between sampling periods revealed substantial differences among forest types
(Figure 2b). Despite of higher pH and greater pH range at some sites during the 2000s, soil pH in evergreen and
deciduous broadleaved forests during the 2000s was significantly lower than during the 1980s (n = 96 and 141,
respectively; P < 0.05), while there were no significant differences in the other three forest types (n = 89, P =
0.34 for mixed coniferous and broadleaved forests; n = 140, P = 0.39 for evergreen coniferous forests; n = 21, P =
0.34 for deciduous coniferous forests). Interestingly, the magnitude of the decrease in soil pH recorded in
evergreen forests (�0.6) was within the range of pH change observed across China’s major croplands (�0.8 to
�0.3) [Guo et al., 2010] and grassland ecosystems (�0.8 to �0.4) [Yang et al., 2012]. However, the magnitude
of the decrease in soil pH across deciduous broadleaved forests (�0.2) was smaller than those reported in
other ecosystems. Unpaired t tests of the change in pH (testing for significant differences from 0 trend) also
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Figure 1. Predicted versus measured soil pH during the training, validation, and testing processes for the two time periods.
(a, d) Training data set, (b, e) validation data set, and (c, f ) testing data set.
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confirmed the results of the paired t tests,
showing a significant decrease for
evergreen and deciduous broadleaved
forests, but no significant change for
evergreen coniferous forests (Figure S8).
Nevertheless, paired t test analysis should
provide more reliable results as it considers
data generated by the ANN simulation.

Soil pH decreased significantly in
broadleaved forests; however, the decrease
was not significant for coniferous forests.
This difference could be driven by differences
in wet acidic deposition in these two forest
types (24.5–36.1 versus 18.5–30.7 kg Sha�1

and 8.6–15.0 versus 6.1–12.0 kgNha�1

during 1980s–2000s). To test this hypothesis,
we examined the relationship between
the magnitude of soil pH change and
wet sulfur/nitrogen deposition during
1980s–2000s. Our analysis indicated that
the magnitude of soil pH change was
negatively correlated with the strength of
atmospheric sulfur deposition (r = �0.37,
P< 0.05; Figure 3a) and nitrogen deposition
across the study area (r = �0.37, P < 0.05;
Figure 3b), suggesting that differences in
atmospheric acidic deposition can partially
explain different patterns of soil pH
dynamics observed across forest types.
To further explore whether the relationship
between soil pH change and acidic
deposition is simply a spatial artifact, we
examined the partial correlations between
these variables using either longitude or
latitude as a controlling factor. Our results
showed that the partial correlations between

soil pH change and sulfur deposition and between soil pH change and nitrogen deposition were still significant
(P< 0.05). Overall, these analyses demonstrate that acidic deposition modifies the magnitude of soil pH change.

Dry acidic deposition including both sulfur and nitrogen deposition could also contribute to soil acidification.
It has been reported that dry deposition is generally high in China. For instance, Pan et al. [2013] demonstrated
that both particulate and gaseous dry sulfur deposition accounted for 68% of total sulfur deposition across
10 sites in northern China. Similarly, a national-scale synthesis by Lü and Tian [2007] reported that the
proportion of dry deposition ranged from 9.6% to 53.6% (averaging 23.5%) of total nitrogen deposition across
the country. Undoubtedly, these relatively high levels of dry acidic deposition could stimulate acidification
processes in forest soils [Larssen et al., 2006; Zhao et al., 2009; [X. K. Lu et al., 2010]. However, it is challenging to
quantify the contribution of dry acidic deposition on regional soil pH dynamics due to the paucity of spatially
explicit dry acidic deposition data across the country.

Finally, soil acidification in broadleaved forests could be due to reduced soil exchangeable base cations. It has
been widely reported that forest growth in China has accelerated over past several decades [Fang et al.,
2014]. This enhanced growth could have led to sequestration of soil base cations in woody biomass. Heavy
precipitation events have also become more frequent across the country [Zhai et al., 2005]. The increased
frequency of high precipitation could stimulate leaching of base cations from the surface soil. Together,
enhanced uptake by plants and increases in the frequency of high precipitation could reduce soil base cations
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Figure 2. Comparison of (a) soil pH between the 1980s and the 2000s
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forest types during the monitoring period. The line in Figure 2a is a 1:1
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in broadleaved forests [Guo et al., 2010],
weakening the buffering capacities
of the soil and making the soil more
sensitive to external acidic deposition. In
addition, elevated base cations leaching
under acidic deposition may also be a
significant driver of soil acidification
observed in broadleaved forests.

3.3. Scientific and Policy Implications

Our findings have important
implications for understanding the
potential effects of acidic deposition on
forest ecosystems. The acidification
of forest soils observed in this study
together with those reported from
cropland [Guo et al., 2010] and grassland
ecosystems [Yang et al., 2012] in China
indicates that atmospheric acidic
deposition has already induced negative
impacts on all of the major ecosystems
of the country. This acidification may
lead to serious ecological consequences
such as species losses [Z. Lu et al., 2010]
and productivity reduction [Mo et al.,
2008]. Moreover, the mobilization of
Al3+ ions in the soil due to buffering
processes may exert toxic effects on
tree growth and ecosystem services in
forest ecosystems [Lieb et al., 2011].
Further studies should be conducted to
clarify the dynamics of soil base cations
and exchangeable Al3+ across forest
ecosystems. This study also implies

urgency in establishing measures aimed at improving environmental quality and retarding the adverse
effects of soil acidification on ecosystem structure and function. It is essential to reduce industrial SO2

emissions by continuously implementing flue gas desulfurization and phasing out inefficient units
[Larssen et al., 2006; X. K. Lu et al., 2010]. Additionally, along with measures that reduce SO2 emissions, it
is important to control industrial NOx emissions by using low NOx burners or installing selective catalytic
reduction systems in power plants, while also reducing agricultural NH3 emissions through long-term
changes in farming practices [Zhao et al., 2009].
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